Abstract
Thermoreversible food materials are suitable for hot-extrusion 3D food printing (HE-3DFP) to customize food designs and enable on-demand food production. A challenge of HE-3DFP is to control the material phase transition such that it melts to allow flow and extrusion and rapidly solidifies afterwards to obtain stable printed structures. We here report on the use of thermal imaging to simultaneously monitor material cooling and deformation of common thermoreversible food materials during HE-3DFP. Thermographic and rheological measurements show that the structural deformation is driven by slow material cooling and prolonged printing time. The surface temperature of printed objects is a good indicator for structural stability. Solidification mechanisms such as cross-linking or strong particle jamming are required to prevent deformation in time (i.e. creep) during printing. Thus we recommend to set the printing temperature just above material's gelation temperature to ensure proper extrudability and structural stability of the printed foods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Innovative Food Science & Emerging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.