Abstract

The initial discovery of left-handed Z-DNA was met with great excitement as a dramatic alternative to the right-handed double-helical conformation of canonical B-DNA. In this chapter, we describe the workings of the program ZHUNT as a computational approach to mapping Z-DNA in genomic sequences using a rigorous thermodynamic model for the transition between the two conformations (the B-Z transition). The discussion starts with a brief summary of the structural properties that differentiate Z- from B-DNA, focusing on those properties that are particularly relevant to the B-Z transition and the junction that splices a left- to right-handed DNA duplex. We then derive the statistical mechanics (SM) analysis of the zipper model that describes the cooperative B-Z transition and show that this analysis very accurately simulates this behavior of naturally occurring sequences that are induced to undergo the B-Z transition through negative supercoiling. A description of the ZHUNT algorithm and its validation are presented, followed by how the program had been applied for genomic and phylogenomic analyses in the past and how a user can access the online version of the program. Finally, we present a new version of ZHUNT (called mZHUNT) that has been parameterized to analyze sequences that contain 5-methylcytosine bases and compare the results of the ZHUNT and mZHUNT analyses on native and methylated yeast chromosome 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.