Abstract

Exercise, together with a low-energy diet, is the first-line treatment for type 2 diabetes type 2 diabetes . Exercise improves insulin sensitivity insulin sensitivity by increasing the number or function of muscle mitochondria mitochondria and the capacity for aerobic metabolism, all of which are low in many insulin-resistant subjects. Cannabinoid 1-receptor antagonists and β-adrenoceptor agonists improve insulin sensitivity in humans and promote fat oxidation in rodents independently of reduced food intake. Current drugs for the treatment of diabetes are not, however, noted for their ability to increase fat oxidation, although the thiazolidinediones increase the capacity for fat oxidation in skeletal muscle, whilst paradoxically increasing weight gain.There are a number of targets for anti-diabetic drugs that may improve insulin sensitivity insulin sensitivity by increasing the capacity for fat oxidation. Their mechanisms of action are linked, notably through AMP-activated protein kinase, adiponectin, and the sympathetic nervous system. If ligands for these targets have obvious acute thermogenic activity, it is often because they increase sympathetic activity. This promotes fuel mobilisation, as well as fuel oxidation. When thermogenesis thermogenesis is not obvious, researchers often argue that it has occurred by using the inappropriate device of treating animals for days or weeks until there is weight (mainly fat) loss and then expressing energy expenditure energy expenditure relative to body weight. In reality, thermogenesis may have occurred, but it is too small to detect, and this device distracts us from really appreciating why insulin sensitivity has improved. This is that by increasing fatty acid oxidation fatty acid oxidation more than fatty acid supply, drugs lower the concentrations of fatty acid metabolites that cause insulin resistance. Insulin sensitivity improves long before any anti-obesity effect can be detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.