Abstract

The development of long lasting therapeutic agents is critically important for efficient treatment of chronic diseases. We herein report a rational strategy to develop a therapeutic thermogel featured with prolonged anti-inflammatory and corneal-protective effects. Specifically, a hyaluronic acid with different sulfation degrees and an amine-terminated poly(N-isopropylacrylamide) are conjugated to achieve the thermogels. In vitro studies reveal that the thermogels are highly biocompatible to statens seruminstitut rabbit cornea cells and their anti-inflammatory properties are strongly dependent on the sulfation degree. In a rabbit model of ocular inflammation, single-dose topical administration of a thermogel formulation could repair defects in corneal epithelium (∼99% thickness restored), prevent corneal cell apoptosis (∼68.3% cells recovered), and suppress ocular surface inflammation (∼4-fold decrease) for a follow-up period of 7 days. This high treatment efficacy of the thermogel can be attributed to its potent inhibition in selectin-mediated leukocyte infiltration as well as effective corneal protection. These findings show a great promise for topical treatment of ocular inflammation and advancement of ophthalmic formulations using the bioactive thermogel as a therapeutic component that is not rapidly cleared from the eye and thus considerably reduces administration times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call