Abstract

This paper presents the flow and heat transfer characteristics in a cross-linked silicon microchannel heat sink. The heat sink is composed of 45 channels, 270 μm wide × 285 μm tall in a silicon substrate formed via deep reactive ion etching. A detailed discussion of the pressure drop data reduction is described, including characterization of the channel cross-sections and methods to account for inlet and exit loss coefficients. No significant difference is observed in the pressure drop measurements between the cross-linked and standard heat sinks flowing air and water. The use of un-encapsulated liquid crystal thermography was successfully utilized to obtain local heat transfer data with FC-72 as the working fluid. The heat transfer results show inflections in the thermal profile due to the cross-links.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.