Abstract

Optimization based on reconstruction of the velocity, temperature, and radiation fields in a porous absorber with continuous linear porosity or pore diameter distribution is carried out in this work. This study analyzes three typical linear pore structure distributions: increasing (“I”), decreasing (“D”), and constant (“C”) types, respectively. In general, the D type porosity (ϕ) layout combined with the I type pore diameter (dp) distribution would be an excellent pore structure layout for a porous absorber. The poor performance range, which should be avoided in the absorber design, is found to be within a wide range of porosity layouts (ϕi = ∼0.7 and ϕo > 0.6) and pore diameter layouts (di = 1.5–2.5 mm), respectively. With a large inlet porosity (ϕi > 0.8), the D type layout with larger porosity gradient (Gp) has a better thermal performance; however, the I type dp layout with a smaller inlet pore diameter (di < 1.5 mm) and a larger pore diameter gradient (Gdp) is recommended when considering the lower pressure drop. Different pore structure layouts (D type or I type) have a significant effect on the pressure drop, even with the same average ϕa and da, the maximum deviation can be up to 70.1%. The comprehensive performance evaluation criteria (PEC) value shows that the D type ϕ layout with a larger ϕa has an excellent thermopressure drop performance, and a part of PEC values for the I type dp layout are greater than unity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.