Abstract

AbstractThis paper reports an investigation on thermo-electro-mechanical vibration of graphene/piezoelectric graphene/piezoelectric/graphene sandwich nanobeams. Based on the nonlocal elasticity theory, Timoshenko beam theory and Hamilton's principles, the governing equations are developed and solved using generalized differential quadrature (GDQ) method. The effects of the nonlocal parameter, external electrical voltage, temperature change and axial force on vibration of graphene/piezoelectric/graphene sandwich nanobeams are examined. The performance and the accuracy of the presented model are highlighted through numerical examples with different boundary conditions. This study reports that the nonlocal parameter and thermo-electro-mechanical loadings have important effect on the natural frequencies and the deflection mode shapes of the graphene/piezoelectric/graphene sandwich nanobeam. The present work can serve as guideline for the design of a nanoscale graphene/piezoelectric/graphene beams based electromechanical resonator sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call