Abstract
Minimum energy structures made up of smart electro-active polymers (SEAPs) have attracted significant attention in the field of soft robotics and actuators due to their exceptional property of undergoing large deformations when subjected to electric fields. In general, temperature also plays a crucial role in modeling of SEAPs because it affects the mechanical, electrical, and thermal properties of the polymer. These properties, in turn, determine the performance of smart polymer-based devices. Motivated by these ongoing advancements, this study investigates the effects of temperature on the nonlinear dynamic behavior of a smart dielectric elastomer-based minimum energy structure (SDEMES) actuator. The governing dynamic equation of the actuator is derived using the standard Euler–Lagrange’s equation. Through the utilization of time-evolution diagrams, Poincaré plots, and phase portraits, the study comprehensively evaluates the effects of temperature on the stability, periodicity, and resonant behavior of the actuator. The results highlight the significant influence of temperature on the stiffness of the elastomer within the SDEMES actuator, directly impacting its actuation performance. The frequency response of the actuator demonstrates a distinct increase in resonant frequency as the temperature rises. These findings shed light on the crucial role of temperature in shaping the stiffness and nonlinear dynamic behavior of smart dielectric elastomer minimum energy structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.