Abstract

We study thermoelectric effects in Coulomb-coupled quantum-dot (CCQD) systems beyond lowest-order tunneling processes and the often applied wide-band approximation. To this end, we present a master-equation (ME) approach based on a perturbative $T$-matrix calculation of the charge and heat tunneling rates and transport currents. Applying the method to transport through a non-interacting single-level QD, we demonstrate excellent agreement with the Landauer-B{\"u}ttiker theory when higher-order (cotunneling) processes are included in the ME. Next, we study the effect of cotunneling and energy-dependent lead couplings on the heat currents in a system of two Coulomb-coupled QDs. Overall, we find that cotunneling processes (i) dominate the heat currents at low temperature and bias, and (ii) give rise to a pronounced reduction of the cooling power achievable with the recently demonstrated Maxwell's demon cooling mechanism. Furthermore, we demonstrate that the cooling power can be boosted significantly by carefully engineering the energy dependence of the lead couplings to filter out undesired transport processes. Our findings emphasize the importance of considering higher-order cotunneling processes as well as the advantage of engineered energy-dependent lead couplings in the optimization of the thermoelectric performance of Coulomb-coupled QD systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call