Abstract

The use of thermoelectric generators (TEGs) in heating systems enables autonomous supply of power to automatic safety devices, creation of optimized gas mixtures, and automation and precise temperature control of exhaust gas and heat carriers. It is particularly important to make heating systems independent of the district electric grid. Results of research and development efforts on a TEG for supplying power to electric devices of self-contained heating and boiler systems are presented. A TEG physical model is proposed, and results of computer simulation and optimization of its basic power and design parameters are given. Two TEG design variants (single and double sided) are considered. Their advantages and shortcomings are discussed. On the basis of theoretical calculations, a prototype TEG for a 10.5-kW boiler is built. At water heating system temperatures from 35°C to 80°C, the TEG electric power is 50 W to 65 W, which is used to supply a circulation pump for forced liquid heat carrier delivery (30 W to 40 W) and a fan for removal of fuel combustion products from the boiler’s smoke chamber (5 W to 7 W).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call