Abstract

We propose a perfect spin-caloritronics device based on a carbon-based organic chain. A spin-semiconducting property is achieved, which originates from the edge localized states. The appearance of spin-dependent transport gaps results in a large spin Seebeck coefficient. Moveover, the dimensionless spin thermoelectric figure of merit (FOM) at room temperature can be enhanced to as high as 35. Furthermore, the pure spin current or single-spin current can be produced at some chemical potentials under a temperature difference, and their transport directions can also be tuned by the chemical potential. Therefore, the carbon-based organic chain is well suited for designing the multifunctional spin-caloritronics devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.