Abstract

Electronic and phononic transport in DNA systems with macroscopic length are studied by means of a real-space renormalization method within the Boltzmann formalism, where the poly(G)-poly(C) base-pair segments arranged following periodic and Fibonacci sequences are comparatively analyzed. The fishbone model and the two-site coarse grain model based on the Born potential including central and non-central interactions are respectively used for the calculation of electrical and lattice thermal conductivities of these DNA systems connected to two reservoirs at their ends. The results show the appearance of gaps in phononic transmittance spectra of segmented poly(G)-poly(C) double chains, which leads to a better thermoelectric figure of merit (ZT) than that of corresponding non-segmented systems. Such ZT can be further improved by introducing a long-range quasiperiodic order, which avoids the thermal transport of numerous low-frequency phonons responsible of the lattice thermal conduction at low temperature. Finally, the influence of reservoirs on ZT is also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.