Abstract

Objectives The aim of the work is to study the possibilities for using a semiconductor device to cauterise bleeding by means of cooling (cryocautery). Method The study is based on methods for approximate modeling of heat exchange processes. Results The construction of a device for cauterisation of bleeding, the actuating element of which consists of a thermoelectric battery operating in cooling mode at the time of blood flow cautery and in heating mode when removing the device from the damaged area, is considered. A model of a device, realised on the basis of the solution of the problem of solidification of a viscous liquid by the method of L.S. Leibenson, is proposed, taking into account the electro- and thermo-physical characteristics of the thermoelectric battery cold source. As a result of the numerical experiment, the dependence of the duration of the ice crust formation on tissues 1 mm thick (which corresponds to the cauterisation of bleeding) is obtained on the value of the supply current of the thermoelectric battery. With increasing current, the duration of the ice crust formation is reduced; this can be of the order of 160 s at 5 A. It was demonstrated that the selection of thermoelectric battery parameters and current should be guided by medical norms and standards in order to avoid frostbite in the tissues adjacent to the bleeding zone. Conclusion The special design of thermoelectric device provides an effective technical means for cauterising bleeding by freezing (cryocautery), providing high intensity of cooling, shortenened thrombus formation duration, and eliminating painful sensations when removing the device from a damaged area.

Highlights

  • The aim of the work is to study the possibilities for using a semiconductor device to cauterise bleeding by means of cooling

  • The construction of a device for cauterisation of bleeding, the actuating element of which consists of a thermoelectric battery operating in cooling mode at the time of blood flow cautery and in heating mode when removing the device from the damaged area, is considered

  • As a result of the numerical experiment, the dependence of the duration of the ice crust formation on tissues 1 mm thick is obtained on the value of the supply current of the thermoelectric battery

Read more

Summary

Introduction

As a result of the numerical experiment, the dependence of the duration of the ice crust formation on tissues 1 mm thick (which corresponds to the cauterisation of bleeding) is obtained on the value of the supply current of the thermoelectric battery. Что перечисленные методы достаточно эффективны, их главными недостатками являются сложность использования в полевых условиях, где сказывается отсутствие постоянного источника холода, дискомфортность процедуры остановки кровотечения, риск обморожения тканей. После остановки кровотечения на ТЭБ 1 от источника электрической энергии 8 подается краткий импульс тока противоположной полярности, что приводит к непродолжительному нагреву тепловыравнивающей пластины 3 и эластичного материала 7 с целью снятия болезненных ощущений при съеме устройства.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.