Abstract
ABSTRACTThermoelectric (TE) materials have gained renewed interests in last decades for both power generation and energy conservation from waste-heat harvesting. Research in the discovery of best TE materials such as, bulk materials, complex structures, and low dimensional play crucial role to achieve high efficiency TE materials. Wide bandgap materials like ZnO can be promising candidate for high efficiency TE power generation owing to its low-cost, nontoxicity, and stability at high temperatures. In this paper, room temperature TE properties of thin film ZnO grown by metal organic vapor deposition (MOCVD) are reported. TE properties of thin film GaN are also studied as reference to that of thin film ZnO. Moreover, high resolution x-ray diffraction (HRXRD), room temperature photoluminescence (PL) with deep ultraviolet (DUV) spectroscopy (excitation at 248nm), hall effect, and thermal gradient methods have been employed to investigate the effect of structural, optical, electrical, and thermal properties of the samples, respectively. The effect of doping concentrations and structural defects on Seebeck coefficients of thin film ZnO are systematically studied and discussed in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.