Abstract

We study numerically transport and thermoelectric properties of electrons placed in a two-dimensional (2D) periodic potential. Our results show that the transition from sliding to pinned phase takes place at a certain critical amplitude of lattice potential being similar to the Aubry transition for the one-dimensional Frenkel-Kontorova model. We show that the 2D Aubry pinned phase is characterized by high values of Seebeck coefficient S = 12. At the same time we find that the value of Seebeck coefficient is significantly influenced by the geometry of periodic potential. We discuss possibilities to test the properties of 2D Aubry phase with electrons on a surface of liquid helium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.