Abstract

Phosphorus-doped Si0.8Ge0.2 thin films were deposited on the Si3N4/SiO2/Si substrate by the RF sputtering. Thermal annealing was carried out to crystallize as-deposited, amorphous-like SiGe thin films. With increasing annealing temperature and time, the crystallization of the SiGe thin films progressed, resulting in a high carrier mobility and a large absolute value of Seebeck coefficient. The SiGe thin film deposited on the Si3N4/SiO2/Si substrate and then annealed at 850°C for 5 h at an argon flow rate of 150 cc/min showed a Seebeck coefficient of -198 µV/K, a Hall mobility of 10.54 cm2/Vs, a carrier concentration of 1.1×1018 cm-3 at 100°C. The thermoelectric hydrogen sensor with the SiGe thin film annealed at 850°C for 5 h showed a voltage signal of 5.81 mV, a catalyst activity of 16.17°C and a response time, corresponding to 90% voltage signal of 50 s for 3% H2 in air. The sensor operating at 100°C detected hydrogen in air at concentrations from 0.01 to 3%, and showed a good linearity between voltage signal and gas concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call