Abstract

Abstract We herein report the thermoelectric properties of Sb 2 Te 3 thick film fabricated by a screen-printing technique and a subsequent annealing process. Each step of the screen-printing fabrication process of Sb 2 Te 3 thick film is described in detail. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of the screen-printed film. The results show that the annealing of the screen-printed Sb 2 Te 3 thick film together with tellurium powder in the same process chamber significantly improves the carrier mobility by increasing the average scattering time of the carrier in the film, resulting in a large improvement of the power factor. By optimizing the annealing process, we achieved a maximum thermoelectric figure-of-merit, ZT, of 0.32 at room temperature, which is slightly higher than that of bulk Sb 2 Te 3 . Because screen-printing is a simple and low-cost process and given that it is easy to scale up to large sizes, this result will be useful for the realization of large, film-type thermoelectric devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.