Abstract

A Bi-15 at.%Sb alloy, homogenized by equal channel angular extrusion (ECAE) at T = 523 K, has been treated just above its solidus temperature, causing segregation of a secondary Bi-rich phase at the grain boundaries. This process results in an in situ composite. The thermoelectric properties of the composite have been measured in the range of 5 K < T < 300 K. The results are compared with those of the homogeneous alloy. The presence of a Bi-rich phase improves the Seebeck coefficient at T < 50 K, and enhances the electrical conductivity by a factor of 1.4 at T = 300 K up to a factor of 3.4 at T = 50 K; unfortunately, the thermal conductivity also increases by about 50% in the same temperature range. As a result, the figure of merit, Z, is slightly suppressed above T = 110 K, but increases at lower temperatures, reaching a peak value of 4.2 × 10−3 K−1 at T = 90 K. The power factor considerably increases over the whole temperature range, rendering this material suitable as the n-type leg of a cryogenic thermoelectric generator for cold energy recovery in a liquefied natural gas plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.