Abstract

We theoretically investigate the ballistic thermoelectric performance of graphene nanoribbons with surface roughness using the nonequilibrium Green's function method. The results show that the surface roughness could dramatically reduce the thermal conductance of graphene nanoribbons, and thus lead to the boosting of thermoelectric performance of graphene (the figure of merit can be as high as 3.7 at room temperature). Meanwhile, the electron transport properties of different edged rough graphene nanoribbons exhibit distinctive anisotropic behaviors, i.e., the thermal power of armchair edged nanoribbons significantly increases, while that of zigzag edged remains nearly unchanged, which is mainly attributed to the edge effect. The findings presented in this paper qualify surface roughness as an efficient approach to enhance the thermoelectric performance of graphene nanoribbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.