Abstract

Bi2O2Se oxyselenide has been actively studied as a potentialn-type thermoelectric material because of its intrinsically low thermal conductivity and high Seebeck coefficient (S). However, Bi2O2Se has very low electrical conductivity (σ), resulting in relatively poor thermoelectric performance. Herein, we investigate the effect of Cu addition on the electrical and thermal transport ofn-type polycrystalline Bi2O2Se. A series of CuxBi2O2Se (x = 0, 0.0025, 0.005, and 0.0075) polycrystalline samples were synthesized by a conventional solidstate reaction. Tetragonal Bi2O2Se was successfully synthesized, and its lattice parameters gradually decreased with the addition of Cu. Further, σ decreased and the magnitude of S increased with increasing Cu content, according to the trade-off relationship between these parameters. Consequently, a maximum power factor of 0.106 mW m-1 K-2 was achieved for the sample with x = 0.0025 at 300 K, owing to the increase in the magnitude of S. The Hall carrier concentration decreased exponentially with the addition of Cu, which is mainly attributed to the possible enlargement of the band gap of the Cu-added samples. The lattice thermal conductivity decreased with increasing x, which was attributed to point-defect phonon scattering via Cu addition. Therefore, a maximumzT of 0.222 was obtained at 790 K for the Cu0.0025Bi2O2Se (x = 0.0025) sample, which was approximately 8% higher than that of the pristine Bi2O2Se sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.