Abstract

The possibility of combustion synthesis of perovskite-oxide thermoelectric materials with the attendant saving of energy and time and without deterioration in the thermoelectric properties was investigated by evaluating the thermoelectric properties of lanthanum-doped strontium titanate (Sr1−xLaxTiO3, 0≤x≤0.1). The materials were successfully combustion synthesized and spark plasma sintered with 98.0–99.6% of true density, and their thermoelectric properties were evaluated from room temperature to 850 K. The optimal lanthanum doping amount ratio x in the considered temperature range was from 0.06 to 0.08, in which Sr0.92La0.08TiO3 sample showed the maximum ZT of 0.22 at 800 K. This value was close to the highest recorded ZT at the same temperature up to now, and the ZT of most samples are higher than those synthesized by the conventional solid state reaction method. Thus, combustion synthesis is promising for producing perovskite-oxide thermoelectric materials for high-temperature application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.