Abstract

The pseudoternary (Ge,Pb,Sn)Te system is characterized by demixing to both Pb- and Ge- rich telluride submicrometer and nanosized domains. The present study is concerned with the thermoelectric (TE) properties of the quasi-ternary (Ge0.6Pb0.3Sn0.1)Te compound at 390 °C, during the demixing process over lengthy periods of time up to 695 h. The dimensionality of the various physical metallurgy patterns evolved was correlated to the lattice thermal conductivity, κL, values. Excluding an initial period (<90 h) of increasing κL, associated with a coarse lamellar structure formation, an opposite decreasing trend (down to ∼0.8W/mK after 695 h), associated with nucleation of submicrometer (∼200 nm) circular phases, twinning and dislocation networks, all considered as effective phonon scattering centers, was observed. Expansion of these submicrometer sites, all over the samples, during the heat treatments, without any subsequent coarsening, clearly demonstrates the potential of retaining, or even improvement of th...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.