Abstract
We herein report the significant relationship between the thermoelectric properties and the crystallographic characteristics, especially the local symmetry of TiO6 octahedra, in the n = 2 Ruddlesden-Popper (RP)-type phases of 5 at.%-rare earth (RE3+ = La3+, Nd3+, Sm3+ and Gd3+)-doped SrO(SrTiO3)2. It was observed that doped RE3+ ions occupied preferentially the Sr-site (C.N. = 9) in SrO layer, which had a favorable restoration effect on the distorted TiO6 octahedra which was found more effective in smaller-sized RE3+-doped compounds, as partially proven by the increase in O3-Ti-O3 bond angle with decreasing in ionic radius of RE3+. The Sm3+ and Gd3+-doped SrO(SrTiO3)2 exhibited larger Seebeck coefficient (|S|) than those of La3+ and Nd3+-doped SrO(SrTiO3)2 over the whole measured temperature range (300~1000 K). This is considered to be due to the enhancement of the density of states (DOS) in Ti 3d orbitals originated from improved symmetry in TiO6 octahedra by smaller RE3+ doping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.