Abstract

The hydrothermal technique was used to create straight single crystal silver telluride nanowires with a diameter of around 200 nm and a length of up to micrometers of decades. There has been no template or surfactant used in the process. As-synthesized products are high purity and well-crystallized, confirmed by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectrum, transmission electron microscopy (TEM), and a high-resolution SAED pattern. Differential scanning calorimetry was used to observe the reversible structural phase shift from the low-temperature monoclinic structure to the high-temperature face-centered cubic structure. Furthermore, the dramatic drop in electrical current in a single nanowire at the phase transition temperature is revealed, paving the way for future research into the manufacturing of one-dimensional nanoscale devices. Silver telluride (Ag2Te) has large thermoelectric coefficients and it was tested by using resistor graph and calculated the values of it, thermal conductivity and Seebeck coefficient were discussed with respect to the temperature of thin films. Semiconductors were superior thermoelectric material due to higher ratio of electrical and thermal conductivities. Therefore, the AgTe thin films deposited on indium tin oxide (ITO) substrates were employed, thermoelectric power and thermal conductivity measurements, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call