Abstract

Roughly, 50% of primary energy worldwide is rejected as waste heat over a wide range of temperatures. Waste heat above 573 K has the highest Carnot potential (>50%) to be converted to electricity due to higher Carnot efficiency. Thermoelectric (TE) materials have gained significant attention as potential candidates for efficient thermal energy conversion devices. Silicon nanowires (SiNWs) are promising materials for TE devices due to their unique electrical and thermal properties. In this study, we report the successful fabrication of high-quality double-sided SiNW arrays using advanced techniques. We engineered the double-sided structure to increase the surface area and the number of TE junctions, enhancing TE energy conversion efficiency. We also employed non-agglomeration wire tip engineering to ensure uniformity of the SiNWs and designed effective Ohmic contacts to improve overall TE efficiency. Additionally, we post-doped the double-sided SiNW arrays to achieve high electrical conductivity. Our results showed a significant improvement in the TE performance of the SiNW array devices, with a maximum figure-of-merit (ZT) value of 0.24 at 700 K, fabricated from the single SiNW with ZT of 0.71 at 700 K in our previous work [Yang et al., Nat. Commun. 12(1), 3926(2021)].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call