Abstract

AbstractThe widespread application of thermoelectric (TE) technology demands high‐performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi2Te3‐based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for high‐performance achievement and demonstrates that the enhancement of the thermoelectric performance of (Bi,Sb)2Te3 can be achieved by applying cyclic spark plasma sintering to BixSb2–xTe3‐Te above its eutectic temperature. This facile process results in a unique microstructure characterized by the growth of grains and plentiful nanostructures. The enlarged grains lead to high charge carrier mobility that boosts the power factor. The abundant dislocations originating from the plastic deformation during cyclic liquid phase sintering and the pinning effect by the Sb‐rich nano‐precipitates result in low lattice thermal conductivity. Therefore, a high ZT value of over 1.46 is achieved, which is 50% higher than conventionally spark‐plasma‐sintered (Bi,Sb)2Te3. The proposed cyclic spark plasma liquid phase sintering process for TE performance enhancement is validated by the representative (Bi,Sb)2Te3 thermoelectric alloy and is applicable for other telluride‐based materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.