Abstract

The thermodynamic performance and optimization of a three-terminal quantum dot nano-device consisting of two capacitively coupled quantum dots connected to electron reservoirs in the Coulomb-blockade regime are investigated. Based on the master equation, the existing model with configuration A and a previously unreported model with configuration B of the device are studied and compared systematically. The maximum power output and efficiency of the two configurations under different given conditions are analyzed. The results obtained indicate that the working regions of the output voltage and Coulomb interaction of configuration B are significantly larger than those of configuration A. Moreover, the optimum ranges of the output voltage and Coulomb interaction of both configuration A and B are determined. A key measure of performance, i.e. the efficiency at the maximum power output, is further studied. It is found that the efficiency at the maximum power output is approximately equal to 0.035 for configuration A and 0.058 for configuration B. When the temperature difference between the two electron reservoirs is large enough, the maximum power output and efficiency at the maximum power output of configuration B are significantly larger than those of configuration A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call