Abstract

A variant of the thermoelectric model of the Earth's dipole magnetic field is considered. It is based on geothermoelectric currents present in the planet's core. The currents cyclically change their direction, which leads over time either to warming on the Earth, if their movement is directed towards the Earth's crust, or to cooling, when moving towards the inner core. With each change in the direction of movement of the thermal currents, the poles of the Earth's magnetic field are inverted simultaneously. The inversion process is instantaneous (on the scale of planetary time) and is not the result of a gradual reversal on the 180° Earth's magnetic axis. At the moment of inversions of thermal currents in the core, the total geomagnetic field decreases to the level of 4.6∙10-6 T, which is constantly supported by thermal currents of semi-conducting rocks of the lower mantle. The considered version of the thermoelectric model of the Earth's magnetic field may be promising for studying the magnetic fields of planets in the Solar system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call