Abstract

Abstract. Aim. The article presents a thermoelectric heat exchanger / heat transfer intensifier design for ensuring the thermal regime of electronic equipment located in external installations.Method. Methods for modelling heat exchange processes were applied.Result. A thermoelectric system is proposed, consisting of a heat exchanger / heat transfer intensifier component located in an external installation. In structural terms, the external installation comprises a compartment disposing electronic heatgenerating components, in which are located channels for ventilating external air, while a second compartment contains elements that require to be sealed from external influences, in cluding contact with external cooling air. A mathematical model is provided for determining the temperature of air flows from the heatexchange surfaces of a thermoelectric system (TES), as well as the limiting length of a thermoelectric system to achieve equal output temperature at given supply currents of thermoelectric batteries.Conclusion. On the basis of the conducted studies, it is concluded that a longer thermoelectric system for ensuring the intensification mode corresponds to an increased difference in the temperature of the coolant at the inlet. The temperature of the air flow at the outlet becomes lower with a further increase in length due to the thermoelectric heat exchanger entering the operating mode of the thermoelectric refrigeration unit.

Highlights

  • heat transfer intensifier design for ensuring the thermal regime of electronic equipment located in external installations

  • heat transfer intensifier component located in an external installation

  • while a second compartment contains elements that require to be sealed from external influences

Read more

Summary

Introduction

В случае использования электронных систем, используемых в составе возобновляемых источников энергии, для их разрешения, как правило, применяются внешние установки. Преимуществом термоэлектрических систем (ТЭС) является то, что тип и режим работы системы определяется комбинацией таких факторов как направление потока теплоты, направление потока электрической энергии и температуры объекта теплового воздействия относительно температуры среды. Вектор потока электроэнергии может быть направлен либо к термоэлектрической батарее, что соответствует подключению ее к внешнему источнику питания, либо от термоэлектрической системы, которая в этом случае будет термоэлектрическим генератором. 1 схематически показано разработанное устройство блока преобразовательного оборудования, с использованием системы обеспечения теплового режима на основе термоэлектрического теплообменника – интенсификатора теплопередачи.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.