Abstract

Thermoelectric generators (TEGs) can significantly improve the net power consumption and battery life of the mobile devices or high performance devices by generating power from the waste heat of these devices. Recent advancements show that the ultrathin thermoelectric devices can be fabricated and integrated within a microelectronic package. This paper first investigates the power generation by a single ultrathin TEG embedded within a micro-electronic package considering several key factors such as load resistance, chip heat flux, and proximity of the TEG to chip. We observe that the power generation from TEGs increases with increasing background heat flux on chip or when TEGs are moved closer to the chip. After the investigation of a single TEG, an array of embedded TEGs is considered in order to analyze the influence of multiple TEGs on total power generation and conversion efficiency. Increasing the number of TEGs from one to nine increase the useful power generation from 72.9 mW to 378.4 mW but decreases the average conversion efficiency from 0.47% to 0.32%. This suggests that average power generated per TEG gradually decrease from 72.9 mW to 42.0 mW when number of TEGs is increased from one to nine. However, the total useful power generated using nine TEGs is significant and emphasize the benefits of using embedded TEGs to reduce net power consumption in electronics packages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call