Abstract

This paper reports an analysis of thermoelectric generator design for dynamic thermoelectric harvesting. In such devices, the available energy for a given temperature cycle is finite and determined by the heat storage unit capacity. It is shown by simulation and experimentally that specific thermoelectric generator designs can increase the energy output, by optimizing the balance between heat leakage and dynamic response delay. A 3D printed, doublewall heat storage unit is developed for the experiments. Output energy of 30 J from 7.5 gr of phase change material, from a temperature cycle between ± 22 °C is demonstrated, enough to supply typical duty-cycled wireless sensor platforms. These results may serve as guidelines for the design and fabrication of dynamic thermoelectric harvesters for applications involving environments with moderate temperature fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call