Abstract
Layered crystals PbBi2(Te1 − xSex)4 + δ and PbBi4(Te1 − xSex)7 + δ with the stoichiometry deviation toward the excess of chalcogenides (x = 0–0.7; δ = 0–0.1) are synthesized. The obtained compounds are attributed to “natural” Bi2Te3-type nanostructures with changed nanoidentity parameters (ξ1 is the layer package thickness, and ξ2 = c is the increased lattice period along the trigonal crystal axis). A change in the parameters ξ1 and ξ2 amplifies the phonon scattering in the samples, causing low thermal conductivity of the crystal lattice of alloys, which is κph = (4.3–7.2) × 10−3 W/(cm K) close to the thermal conductivity of amorphous materials. The presence of finely divided precipitations of the additional phases (δ > 0) favors a decrease in the value of κph. In this case, the lower mobility of electrons μ favors a decrease in the maximum figure of merit values (Z = α2σ/κ) for the samples in comparison with PbTe and Bi2Te3 alloys. At the same time, the low values of κph and Z lead to an increase in the magnetic field production ability of alloys, which attain high values of X = Y/(1 + ZT) > 4–5 (here, Y = ασ/κ). No features of the belonging of the studied materials to a class of 3D “topological insulators” (dielectrics in the bulk and metals on the surface) are found over the temperature range of 77–700 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.