Abstract

The proposed Thermo-Electric Energy Storage (TEES) system addresses the need for peak-load support (1–2 daily hours of operation) for small-distributed users who are often owners of small/medium size PV systems (4 to 50 kWe) and wish to introduce a reliable storage system able to compensate the productivity/load mismatch. The proposed thermoelectric system relies on sensible heat storage: a warm resource at 120/160 °C (a hot water reservoir system), and a cold resource at −10 /−20 °C (a cold reservoir system containing water and ethylene glycol). The power cycle operates through a trans-critical CO2 scheme including recuperation; in the storage mode, a supercritical heat pump restores heat to the hot reservoir, while a cooling cycle (using a suitable refrigerant) cools the cold reservoir. The power cycle and the heat pump benefit from geothermal heat integration at low-medium temperatures (80–120 °C), thereby allowing to achieve a marginal round-trip efficiency (electric-to-electric) in the range from 50 to 75% (not considering geothermal heat integration).The three systems are analyzed with different resource conditions and parameters setting (hot storage temperature, pressure levels for all cycles, ambient temperature…); exergy and exergo-economic analyses are performed to evaluate the economic competitiveness and in order to identify the critical items in the system. A sensitivity analysis on the main parameters affecting the produced power cost of the system per unit electric energy is carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call