Abstract
Oxide thermoelectrics are relatively new materials that are workable at temperatures in the range of 400K≤T≤1200K. There are several types of thermoelectric oxide, namely, cobalt oxides (p-type semi-conductors), manganese oxides (n-type) and zinc oxides (n-type semi-conductors) for high temperature energy harvesting. The Seebeck coefficient of 3d metal oxide thermoelectrics is relatively high due to either high density of states at Fermi surfaces or spin entropy flow associated with the carrier flow. The spin entropy part dominates the Seebeck coefficient of 3d-metal oxides at temperatures above 300K. Introduction of impurity particles or quantum-well structures to enhance thermionic emission and energy filtering effects for the oxide semiconductors may lead to a significant improvement of thermoelectric performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.