Abstract
Thermoelectric effects in graphene are considered theoretically with particular attention paid to the role of impurities. Using the T -matrix method we calculate the impurity resonant states and the momentum relaxation time due to scattering on impurities. The Boltzmann kinetic equation is used to determine the thermoelectric coefficients. It is shown that the resonant impurity states near the Fermi level give rise to a resonant enhancement of the Seebeck coefficient and of the figure of merit $ZT$ . The Wiedemann-Franz ratio deviates from that known for ordinary metals, where this ratio is constant and equal to the Lorentz number. This deviation appears for small chemical potentials and in the vicinity of the resonant states. In the limit of a constant relaxation time, this ratio has been calculated analytically for $\mu=0$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.