Abstract
Fretting is a wear phenomenon that occurs when cyclic loading causes two surfaces in intimate contact to undergo small oscillatory motions with respect to each other. During fretting, high points or asperities of the mating surfaces adhere to each other and small particles are pulled out, leaving minute, shallow pits and powdery debris. Sometimes these surface conditions are neglected, but they are important in some application such as the aerospace industry. In this research work, non-contacting and contacting thermoelectric power techniques are performed in fretted 7075-T6 and Ti-6Al-4V samples. It has been found that the contacting and non-contacting thermoelectric power measurements are associated directly with the subtle material variations such as work hardening and residual stresses due to plastic deformation produced in the fretting zone but surface topography. Therefore, both techniques could be used for a global characterization of the most relevant fretting induced effects. Potential of these techniques to monitor subsurface changes in other severe surface plastic deformation processes are clearly envisaged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.