Abstract

Research Highlights • Electronic, magnetic, elastic and thermoelectric properties of RbCrC alloy are investigated. • Material is half-metallic, ductile and anisotropic in nature. • The total magnetic moment (3[Formula: see text][Formula: see text]B) obeys the Slater–Pauling rule. • The HM RbCrC compound is identified as potential candidate for spintronic applications. • ZT calculated values of 0.89 and 0.94 make RbCrC a promising thermoelectric material candidate for use in future devices. The aim of this work is to investigate the half-metallicity behavior, elastic, thermodynamic and thermoelectric (TE) properties of the Heusler compound RbCrC using the generalized gradient approximation (GGA-PBE96) and the modified Becke–Johnson (mBJ) approach. The electronic band structures and density of states reveal that RbCrC is a half-metallic ferromagnet (HMF). The calculated total magnetic moment of 3[Formula: see text][Formula: see text]B follows the Slater–Pauling rule ([Formula: see text]). The half-metallicity character can be maintained in the 5.4–7.4 Å lattice constants range and the 0.8–1.2 [Formula: see text]/[Formula: see text] ratio range. Existence of half-metallic ferromagnetism in RbCrC makes it a promising material for practical applications in the spintronic field. Also, the RbCrC exhibits a ductile and anisotropic behavior. The quasi-harmonic Debye model (QHDM) is used to calculate the thermodynamic properties. The BoltzTraP code which is based on semi-classical Boltzmann theory (SCBT) is applied for calculating TE properties. According to the obtained figure of merit values (ZT between 0.89 and 0.94 from 50 K to 800 K), the RbCrC alloy remains a good candidate for thermoelectric applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call