Abstract

Determination of residual stresses and the positive or negative effect that they may have on the component is an important consideration in design. Unexpected failure of components, latter determined to be attributable to residual stress, is not uncommon. In this paper, a theoretical study of the stresses in a long hollow circular cylinder subjected to rapid cooling of the exterior surface is presented. A quasi-static uncoupled thermoelastoplastic analysis, based on incremental theory of plasticity, is developed and a numerical procedure for successive approximation is formulated. For this analysis, it is assumed that the material has temperature-dependent properties and is characterized by linear strain hardening. The thermoelastoplastic and residual stress distributions are discussed in detail. The results are compared with related published work where a reasonable agreement is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.