Abstract

Thermoelastohydrodynamic lubrication (TEHD) analysis is presented to investigate the static performance of tilting-pad journal bearings. A completely numerical solution is obtained. The Newton–Raphson method is employed to predict the bearing characteristics of the hydrodynamic pressure, the eccentricity and the pad attitude angles simultaneously. For the temperature calculation, three-dimensional (3D) energy equations for the fluid under each pad and 3D heat transfer equations for the pads are solved using a sequential sweeping method. The elastic deformation and thermal expansion of each pad are calculated with the 20-node isoparametric finite element method. It is found that the Newton–Raphson method is a smart and efficient method. The results show that the elastic deformation due to the hydrodynamic pressure and the influence of the temperature elevation play an important role in the calculated bearing system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call