Abstract

Thermoelastohydrodynamic lubrication (TEHL) analysis for spur gears with consideration of surface roughness is presented. The model is based on Johnson’s load sharing concept where a portion of load is carried by fluid film and the rest by asperities. The solution algorithm consists of two parts. In the first part, the scaling factors and film thickness with consideration of thermal effect are determined. Then, simplified energy equation is solved to predict the surfaces and film temperature. Once the film temperature is known, the viscosity of the lubricant and therefore friction coefficient are calculated. The predicted results for the friction coefficient based on this algorithm are in agreement with published experimental data as well as those of EHL simulations for rough line contact. First point of contact is the point where the asperities carry a large portion of load and the lubricant has the highest temperature and the lowest thickness. Also, according to experimental investigations, the largest amount of wear in spur gears happens in the first point of contact. Effect of speed on film temperature and friction coefficient has been studied. As speed increases, more heat is generated and therefore film temperature will rise. Film temperature rise will result in reduction of lubricant viscosity and consequently decrease in friction coefficient. Surface roughness effect on friction coefficient is also studied. An increase in surface roughness will increase the asperities interaction and therefore friction coefficient will rise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.