Abstract

The paper focuses on the solution of a numerical model to explore the journal bearing performance under transient thermal elastohydrodynamic lubrication with non-Newtonian lubricants based on Carreau viscosity model. The newly derived time-dependent modified Reynolds equation and the adiabatic energy equation have been formulated using a non-Newtonian Carreau viscosity model. The simultaneous systems consisting of the modified Reynolds equation, elasticity equation and energy equation with initial conditions were solved numerically using the multi-grid multi-level method with full approximation technique. The analysis showed that the fluid characteristics as defined by the Carreau model, led to large differences in minimum film thickness and maximum temperature rise for bearing liners with low elastic modulus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call