Abstract

An analysis of the propogation of thermoelastic waves in a homogeneous, anisotropic, thermally conducting plate has been presented in the context of the generalized Lord-Shulman theory of thermoelasticity. Three different methods are used in this analysis: two of them are exact and the third is a semianalytic finite element method (SAFE). In our exact analysis, two different approaches are used. The first one, which is applicable to transversely isotropic plate, is based on introducing displacement potential functions, whereas in the second approach, which is applicable to any triclinic material, we rewrite the governing equations and boundary conditions in a matrix form. Finally, in the SAFE method, the plate is discretized along its thickness using N parallel, homogeneous layers, which are perfectly bonded together. Frequency spectrum and dispersion curves are obtained using the three methods and are shown to agree well with each other. The effects of thermal relaxation time and coupling term are also investigated. Numerical calculations have been presented for a silicon nitride (Si3N4) plate. However, the methods can be used for other materials as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.