Abstract

This article presents semi-analytical solutions for stress distributions in exponentially and functionally graded rotating annular disks with arbitrary thickness variations. The disk is under pressure on its boundary surfaces and exposed to temperature distribution varying linearly across thickness. Material properties are supposed to be graded in the radial di- rection of the disk and obeying to two different forms of distribution of volume fraction of constituents. Different conditions at boundaries for stresses and displacement are discus- sed. Accurate and efficient solutions for displacement and stresses in rotating annular disks are determined using infinitesimal theory. Numerical results are carried out and discussed for different cases. It can be deduced that the gradient of material properties and thick- ness variation as well as the change of temperature sources have a specific effect in modern applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.