Abstract

Analysis for general closed form solution of the thermoelastic waves in anisotropic heat conducting materials is obtained by using the solution technique for the biquadratic equation in the framework of the generalized theory of thermoelasticity. Obtained results are general in nature and can be applied to the materials of higher symmetry classes such as transvesely isotropic, cubic, and isotropic materials. Uncoupled and coupled thermoelasticity are the particular cases of the obtained results. Numerical computations are carried out on a fiber reinforced heat conducting composite plate modeled as a transversely isotropic media. The two dimensional slowness curves corresponding to different thermal relaxations are presented graphically and characteristics displayed are analyzed with thermal relaxations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.