Abstract

AbstractThis study extends the discontinuous Galerkin (DG) methods to simulations of thermoelasticity. A thermoelastic formulation of interior penalty DG (IP-DG) method is presented and aspects of the numerical implementation are discussed in matrix form. The content related to thermal expansion effects is illustrated explicitly in the discretized equation system. The feasibility of the method for general thermoelastic simulations is validated through typical test cases, including tackling stress discontinuities caused by jumps of thermal expansive properties and controlling accompanied non-physical oscillations through adjusting the magnitude of IP term. The developed simulation platform upon the method is applied to the engineering analysis of thermoelastic performance for a turbine vane and a series of vanes with various types of simplified thermal barrier coating (TBC) systems. This analysis demonstrates that while TBC properties on heat conduction are generally the major consideration for protecting the alloy base vanes, the mechanical properties may have more significant effects on protections of coatings themselves. Changing characteristics of normal tractions on TBC/base interface, closely related to the occurrence of coating failures, over diverse components distributions along TBC thickness of the functional graded materials are summarized and analysed, illustrating the opposite tendencies in situations with different thermal-stress-free temperatures for coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call