Abstract
Plane thermoelasticity solutions are presented for the problem of a crack in bonded materials with a graded interfacial zone. The interfacial zone is treated as a nonhomogeneous interlayer having spatially varying thermoelastic moduli between dissimilar, homogeneous half-planes. The crack is assumed to exist in one of the half-planes at an arbitrary angle to the graded interfacial zone, disturbing uniform steady-state heat flows. The Fourier integral transform method is employed in conjunction with the coordinate transformations of field variables in the basic thermoelasticity equations. Formulation of the current nonisothermal crack problem lends itself to the derivation of two sets of Cauchy-type singular integral equations for heat conduction and thermal stress analyses. The heat-flux intensity factors and the thermal-stress intensity factors are defined and evaluated in order to quantify the singular characters of temperature gradients and thermal stresses, respectively, in the near-tip region. Numerical results include the variations of such crack-tip field intensity factors versus the crack orientation angle for various combinations of material and geometric parameters of the dissimilar media bonded through the thermoelastically graded interfacial zone. The dependence of the near-tip thermoelastic singular field on the degree of crack-surface partial insulation is also addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.