Abstract

This paper studies the effects of shaft rub on a rotating system’s vibration response with emphasis on heat generation at the contact point. A 3D heat transfer code, coupled to a 3D vibration code, was developed to predict the dynamic response of a rotor in the time domain. The shaft bow is represented by an equivalent bending moment and the contact forces by rotating external forces. The seal ring is modeled as a linear spring, which exerts a normal force to the rotor. The tangential force is then calculated as the product of the normal force with the friction coefficient. Stable or unstable spiraling and oscillating modes were seen to occur in well defined shaft speed zones. In the main, for the configurations studied, the shaft vibration was found to be unstable for speeds below the first critical speed and stable for speeds above the first critical speed. Limit cycle behavior was observed when the phase angle between the unbalance force and the response was around 90 deg. The vibration behavior with rub during startup and shutdown was studied by considering the effects of acceleration/deceleration rate, friction coefficient, and mass unbalance. It was found that friction coefficient and increasing mass unbalance amplified the rub effects while acceleration/deceleration rate reduced it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.