Abstract

This article presents a numerical investigation on the free vibration characteristics of rotating pretwisted sandwich conical shell panels with two functionally graded carbon nanotube-reinforced composite (FG-CNTRC) face sheets and a homogeneous core in uniform thermal environments. The carbon nanotubes are considered to be aligned with the span length and distributed either uniformly or functionally graded along the thickness of the sandwich conical shell panel. The material properties of FG-CNTRC face sheets and homogenous core are assumed to be temperature-dependent and computed employing micromechanics models. The shallow conical shell is modeled using finite element method within a framework of the higher-order shear deformation theory. Lagrange’s equation of motion is employed to derive the dynamic equilibrium equations of sandwich conical shell panels rotating at moderate rotational speeds wherein Coriolis effect is neglected. Computer codes are developed on the basis of present mathematical formulation to determine the natural frequencies of the sandwich conical panels. Convergence and comparison studies are performed to examine the consistency and accurateness of the present formulation. The numerical results are presented to analyze the effects of various parameters on the natural frequencies of the pretwisted FG-CNTRC sandwich conical shell panels under different thermal conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call