Abstract

In the current investigation, the thermoelastic vibration of a viscoelastic microbeam resting on the Winkler foundation is studied using the fractional-order theory. To describe the damping of the viscoelastic material according to experimental results, the Kelvin–Voigt model is replaced by a new form with a fractional-order derivative. The generalized thermoelasticity model and Euler–Bernoulli beam theory are used to construct the governing equation. The microbeam is subjected to axial load, ultrafast laser heating, and varying sinusoidal heat. The governing equation is then solved using the Laplace transform technique to determine the deflection and thermoelastic interaction responses of microbeams. The effects of many parameters such as the coefficient of viscosity, axial load, fractional derivative order, laser pulse duration, and foundation parameter on the microbeam response are explained and discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.