Abstract

We show that the dominant energy loss mechanism in plate modes of a 1.5 μm thick silicon micromechanical resonator is thermoelastic damping. In situ ultra-high vacuum annealing lowers the dissipation of two neighboring resonance modes (460 and 510 kHz) at 120 K to Q−1≤5×10−7. From 120 to 400 K, the Q−1 of these modes increase at different rates, in quantitative agreement with a modification (that accounts for mode shape) of Zener’s theory of thermoelastic damping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call